
Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 8, Issue 3, March (2018)

ISSN: 2395-5317 ©EverScience Publications 75

Avoidance of Duplication of Encrypted Bigdata on

Cloud Storage

Sharmi V

Student, Department of CSE, University College of Engineering, Nagercoil.

Asmitha C

Student, Department of CSE, University College of Engineering, Nagercoil.

Mactalin Godfri M

Student, Department of CSE, University College of Engineering, Nagercoil.

Neela K.L

Assistant Professor, Department of CSE, University College of Engineering, Nagercoil.

Abstract – In this current digital world, data is more importance

for individuals as well as organizations. In Cloud computing,

dominant part is datacenter where clients/users data are stored.

In the datacenters all the data might be uploaded multiple time or

data can be hacked so while using the cloud services the data need

to be encrypted and stored. When it comes to big data in cloud,

the big data means huge datasets so it is very essential to manage

the data in secure place. Deduplication is one such storage

optimization technique that avoids storing duplicate copies of

data. Therefore, few of them can be easily deployed in practice.

This scheme, propose an efficient method to deduplicate

encrypted data stored in cloud based on possession undertaking

and Proxy Re-Encryption (PRE). This scheme also uses the

standard AES algorithm for data encryption to outsource the

data. This scheme motivates to save cloud storage and preserve

the privacy of data holders by proposing a method to manage

encrypted data storage with deduplication. In PRE scheme,

flexibly support data sharing with deduplication and does not

intrude the privacy of data holders and integrates cloud records

deduplication with access manages. At last this process will be

examined by performance based on tremendous evaluation and

computer simulations. The outcomes display the superior

performance and effectiveness of the scheme for ability sensible

deployment, explicitly for big data deduplication in cloud storage.

Index Terms – Big data, cloud computing, data deduplication,

proxy re-encryption

1. INTRODUCTION

Cloud computing offers a new way of Information Technology

services by rearranging various resources (e.g., storage,

computing) and providing them to users based on their

demands. Cloud computing provides a big resource pool by

linking network resources together. It has desirable properties,

such as scalability, elasticity, fault-tolerance, and pay-per-use.

Thus, it has become a promising service platform.

The most important and popular cloud service is data storage

service. Cloud users upload personal or confidential data to the

data center of a Cloud Service Provider (CSP) and allow it to

maintain these data where data are shared among many users.

Although cloud storage space is huge, data duplication greatly

wastes network resources, consumes a lot of energy, and

complicates data management. Deduplication becomes critical

for big data storage and processing in the cloud.

Deduplication has proved to achieve high cost savings e.g.,

reducing up to 90-95 percent storage needs for backup

applications [9] and up to 68 percent in standard file systems

[10]. Obviously, the savings, which can be passed back directly

or indirectly to cloud users, are significant to the economics of

cloud business. The practical issue is how to manage encrypted

data storage with deduplication in an efficient way. However,

current industrial deduplication solutions cannot handle

encrypted data. Existing solutions for deduplication suffer from

brute-force attacks [7], [2], They cannot flexibly support data

access control and revocation at the same time. Most existing

solutions cannot ensure reliability, security and privacy with

sound performance.

In practice, it is hard to allow data holders to manage

deduplication due to a number of reasons. First, data holders

may not be always online or unavailable for such a

management, which could cause storage delay. Second,

deduplication could become too complicated in terms of

communications and computations to involve data holders into

deduplication process. Third, it may intrude the privacy of data

holders in the process of discovering duplicated data. Forth, a

data holder may have no idea how to issue data access rights or

deduplication keys to a user in some situations when it does not

know other data holders due to data super-distribution.

Therefore, CSP cannot cooperate with data holders on data

storage deduplication in many situations.

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 8, Issue 3, March (2018)

ISSN: 2395-5317 ©EverScience Publications 76

This scheme is based on Proxy Re-Encryption (PRE) to

manage encrypted data storage with deduplication. The aim is

to solve the issue of deduplication in the situation where the

data holder is not available or difficult to get involved. Mean-

while, the performance of data deduplication in the scheme is

not influenced by the size of data, thus applicable for big data.

Specifically, the contributions of this paper can be summarized

as below:

 This scheme motivates to save cloud storage and

preserve the privacy of data holders by proposing a

method to manage encrypted data storage with

deduplication.

 This scheme proposes an effective approach to verify

data ownership and check duplicate storage with

secure challenge and big data support

 This scheme integrates cloud data deduplication with

data access control in a simple way, thus reconciling

data deduplication and encryption.

 This scheme proves the security and assess the

performance of the proposed scheme through analysis

and simulation. The results show its efficiency,

effectiveness and applicability.

The rest of the paper is organized as follows. Section 2 gives a

brief overview of related work. Section 3 introduces system

and security models, preliminaries and notation. Section 4

gives the detailed description of our scheme, followed by

security analysis and performance evaluation in Section 5.

Finally, a conclusion is presented in the last section.

2. RELATED WORK

2.1 Encrypted Data Deduplication

Cloud storage service providers such as Drop box, Google

Drive, Mozy and others perform deduplication to save space by

only storing one copy of each file uploaded. However, if clients

conventionally encrypt their data, storage savings by

deduplication are totally lost. This is because the encrypted

data are saved as different contents by applying different

encryption keys. Existing industrial solutions fail in encrypted

data deduplication.

Building a deduplication storage system over cloud computing.

Sun et al. proposed data deduplication technique, with more

reliability. In data de-duplication process are removing

unnecessary copies of data and save memory space. Previously,

many de-duplication systems are implemented based on the

policies such as, file level, block level deduplication and client-

server side de-duplication and it has some drawback they are

High reliability provision mechanism. Wang et al. proposed a

scheme called RADMAD. It is dynamic and distributed

recovery process in the cloud storage. The conflict between

deduplication and encryption was first discovered by

distributed file system.

Policy-based deduplication in secure cloud storage Liu et al.

The user data must be transferred twice, which makes low

system efficiency in today's limited bandwidth uses equality

predicate encryption scheme and a hybrid approach for de-

duplication to prevent information leakage. when encrypting

the outsourced data. proposed an approach for secure

authorized de-duplication which supports the duplicate check

with differential privileges of users, but needs more user

involvement. It has some disadvantages like, based on the

existing de-duplication technology, it proposes the security

proxy and random storage strategy, which separate the security

service and storage service. In this way, it resolves the convict

between data encryption and de-duplication, resist the attack

from outside, and prevent the illegal use of user data and

privacy from CSP.

Puzio et al. proposed secure deduplication with encrypted data

for cloud storage. The advantages of deduplication

unfortunately come with a high cost in terms of new security

and privacy challenges. It proposes Clouded up, a secure and

efficient storage service which assures block-level

deduplication and data confidentiality at the same time. This

scheme has some drawbacks like, it copes with the inherent

security exposures of convergent encryption and propose

ClouDedup, which preserves the combined advantages of

deduplication and convergent encryption. The security of

ClouDedup relies on its new architecture whereby in addition

to the basic storage provider, a metadata manager and an

additional server are defined: the server adds an additional

encryption layer to prevent well-known attacks against

convergent encryption.

Reconciling deduplication and client-side encryption is an

active research topic. Message-Locked Encryption (MLE)

intends to solve this problem [6]. The most prominent

manifestation of MLE is Convergent Encryption (CE). Letting

M be a file’s data, a client first computes a key K ←H(M)

by applying a crypto-graphic hash function H to M, and then

computes ciphertext C ←E(K,M) via a deterministic

symmetric encryption scheme.. However, CE is subject to an

inherent security limitation, namely, susceptibility to offline

brute-force dictionary attacks [3]. Knowing that the target data

M underlying the target ciphertext C is drawn from a dictionary

S=(M1; . . . ; Mn) of size n, an attacker can recover M in the

time for n = |S| off-line encryptions: for each i =(1; . . . ; n), it

simply CE-encrypts Mi to get a ciphertext denoted as Ci and

returns Mi such that C=Ci. This works because CE is

deterministic and keyless. The security of CE is only possible

when the target data is drawn from a space too large to exhaust.

Bellare et al. proposed message-locked encryption and secure

deduplication This involves generating the key, followed by

encryption and tag generation. It provides definitions of

privacy and integrity peculiar to this domain. Now having

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 8, Issue 3, March (2018)

ISSN: 2395-5317 ©EverScience Publications 77

created a clear, strong target for designs, it makes contributions

that may broadly be divided into two parts: practical and

theoretical. This category it analyzes existing schemes and

new variants, breaking some and justifying others with proofs

in the random-oracle-model (ROM)

Another problem of CE is that it is not flexible to support data

access control by data holders, especially for data revocation

process, since it is impossible for data holders to generate the

same new key for data re-encryption. An image deduplication

scheme adopts two servers to achieve verifiability of

deduplication [5]. The CE-based scheme described in [3]

combines file content and user privilege to obtain a file token

with token unforgeability.

However, both schemes directly encrypt data with a CE key,

thus suffer from the problem as described above. To resist the

attack of manipulation of data identifier, Meye et al. proposed

to adopt two servers for intra-user deduplication and inter-

deduplication [6]. The ciphertext C of CE is further encrypted

with a user key and transferred to the servers. However, it does

not deal with data sharing after deduplication among different

users. Close-up [3] also aims to cope with the inherent security

exposures of CE, but it can-not solve the issues caused by data

deletion. A data holder that removes the data from the cloud

can still access the same data since it still knows the data

encryption key if the data is not completely removed from the

cloud.

Bellare et al. [2] proposed DupLESS that provides secure

deduplicated storage to resist brute-force attacks. In Dup-

LESS, a group of affiliated clients (e.g., company employees)

encrypt their data with the aid of a Key Server (KS) that is

separate from a Storage Service (SS). Clients authenticate

themselves to the KS, but do not leak any information about

their data to it. As long as the KS remains inaccessible to

attackers, high security can be ensured. Obviously, Dup-LESS

cannot control data access of other data users in a flexible way.

Alternatively, a policy-based deduplication proxy scheme [2]

was proposed but it did not consider duplicated data

management (e.g., deletion and owner management) and did

not evaluate scheme performance.

Previous scheme, proposed using PRE for cloud data

deduplication. This scheme applies the hash code of data to

check ownership with signature verification, which is

unfortunately insecure if H(M) is disclosed to a malicious user.

This scheme proposes a new ownership verification approach

to improve our previous work and aim to support big data

deduplication in an efficient way.

2.2 Data Ownership Verification and Others

Li et al. [4] first introduced the practical implementation of

Proofs of Ownership (PoW) based on Merkle tree for

deduplication, which realized client-side deduplication. They

proposed to apply an erasure coding or hash function over the

original file first and then use Merkle tree on the pre-processed

data to generate the verification information. When challenging

approver, a verifier randomly chooses several leaves of the tree

and obtains the corresponding sibling paths of all these leaves.

Only when all paths are valid, will the verifier accept the proof.

This construction can identify deduplication at a client to save

network bandwidth and guarantee that the client holds a file

rather than some part.

Yang et al. also proposed a cryptographically secure and

efficient scheme to check the ownership of a file, in which a

client proves to the server that it indeed possesses the entire file

without uploading the file [4]. By relying on dynamic spot

checking, a data holder only needs to access small but dynamic

portions of the original file to generate the proof of possession

of the original file, thus greatly reducing the bur-den of

computation on the data holder and minimizing the

communication cost between the data holder and CSP. At the

same time, by utilizing dynamic coefficients and randomly

chosen indices of the original files, the scheme mixes the

randomly sampled portions of the original file with the

dynamic coefficients to generate the unique proof in every

challenge. The work focuses on ownership proof of the

uploaded data during data deduplication.

In order to reduce workloads due to duplicate files, Wu et al.

proposed Index Name Servers (INS) to manage not only file

storage, data deduplication, optimized node selection, and

server load balancing, but also file compression, chunk

matching, real-time feedback control, IP information, and busy

level index monitoring [8]. To manage and optimize storage

nodes based on a client-side transmission status by the

proposed I5NS, all nodes must elicit optimal performance and

offer suitable resources to clients. This way, not only can the

performance of a storage system be improved, but the files can

also be reasonably distributed, decreasing the workload of the

storage nodes. However, this work cannot deduplicate

encrypted data.

Fan et al. proposed a hybrid data deduplication mechanism that

provides a practical solution with partial semantic security [9].

This solution supports deduplication on plaintext and

ciphertext. But this mechanism cannot support encrypted data

deduplication very well. It works based on the assumption that

CSP knows the encryption key of data. Thus it cannot be used

in the situation that the CSP cannot be fully trusted by the data

holders or owners.

This scheme apply PRE to deduplicate encrypted data. Our

scheme can resist the attacks mentioned above in CE and

achieve good performance without keeping data holders online

all the time. Meanwhile, it also ensures the confidentiality of

stored data and supports digital rights management. It aims to

achieve deduplication on encrypted big data in cloud

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 8, Issue 3, March (2018)

ISSN: 2395-5317 ©EverScience Publications 78

3. PROBLEM FORMULATION

 3.1 System and Security Model

This scheme deduplicate encrypted data at CSP by applying

PRE to issue keys to different authorized data holders based on

data ownership challenge. It is applicable in scenarios where

data holders are not available for deduplication control.

As shown in Fig. 1, the system contains three types of entities:

1) CSP that offers storage services and cannot be fully trusted

since it is curious about the contents of stored data, but should

perform honestly on data storage in order to gain commercial

profits; 2) data holder (ui) that uploads and saves its data at

CSP. In the system, it is possible to have a number of eligible

data holders (ui; i=1; . . . ; n) that could save the same encrypted

raw data in CSP. The data holder that produces or creates the

file is regarded as data owner. It has higher priority than other

normal data holders, which will be presented in Section 4; 3) a

Proxy Server (PS) that does not collude with CSP and is fully

trusted by the data holders to verify data ownership and handle

data deduplication. This case, PS cannot know the data stored

in CSP and CSP should not know the plain user data in its

storage upload the data to the cloud.

It is possible that CPS and its users (e.g., data holders) can

collude. In practice, however, such collusion could make the

CSP lose reputation due to data leakage. A negative impact of

bad reputation is the CSP will lose its users and finally make it

lose profits. On the other hand, the CSP users (e.g., data

holders) could lose their convenience and benefits of storing

data in CSP due to bad reputation of cloud storage services.

Thus, the collusion between CSP and its users is not profitable

for both of them.

Fig. 1 System Model

Additional assumptions include: data holders honestly provide

the encrypted hash codes of data for ownership verification.

The data owner has the highest priority. A data holder should

provide a valid certificate in order to request a special

treatment. Users, CSP and PS communicate through a secure

channel (e.g., SSL) with each other. CSP can authenticate its

users in the process of cloud data storage. It further assume that

the user policy Policy for data storage, sharing and

deduplication is provided to CSP during user registration.

3.2 Preliminary and Notation

Proxy Re-Encryption

A PRE scheme is represented as a Tuple of (possibly

probabilistic) polynomial time algorithms (KG; RG; E; R; D)

(KG; E; D) are the standard key generation, encryption, and

decryption algorithms. On input the security parameter 1k, KG

outputs a public and private key pair (pkA; skA) for entity A. On

input pkA and data M, E outputs a ciphertext CA = E(pkA, M).

On input skA and ciphertext CA, D out-puts the plain data M =

D(skA,CA).

On input (pkA; skA; pkB), the re-encryption key generation

algorithm RG, outputs re-encryption key rkA->B for a proxy.

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 8, Issue 3, March (2018)

ISSN: 2395-5317 ©EverScience Publications 79

On input rkA!B and ciphertext CA, the re-encryption function R,

outputs R(rkA->B;CA)= E(pkB;m)=CB which can be decrypted

with private key skB.

Symmetric Encryption

Encrypt (DEK; M) The Encrypt algorithm takes as input data

M, the symmetric key DEK. It encrypts M with DEK and

outputs the ciphertext CT. This process is conducted at user u

to protect its data stored at CSP with DEK.

Decrypt (DEK; CT). The Decrypt algorithm takes as input the

encrypted data CT, the symmetric key DEK. The algorithm

decrypts CT with DEK and outputs the plain data M. A user

(data holder) conducts this process to gain the plaintext of

stored data at CSP.

3.2.1 System Setup

There are two groups G1; GT of prime order q with a bilinear

map e : G1 × G1 → GT. The system parameters are random

generators g 2 G1 and Z =(g; g) 2 GT.

During system setup, every data holder ui generates ski and pki

for PRE: ski = ai; pki = gai where ai 2Zp. The public key pki is

used for generating the reencryption key at AP for ui. Assuming

that E(a; b) is an elliptic curve over GF (q), P is a base point

that is shared among system entities, si€R{0; . . . ; 21} is the

ECC secret key of user ui and Vi = siP is the corresponding

public key and s is a security parameter. This binding is crucial

for the verification of the user identity. PS independently

generates pkPS and skPS for PRE and broadcast pkPS to CSP

users.

4. SCHEMES

This strategy contains the following main aspects:

Encrypted Data Upload: If data duplication check is negative,

the data holder encrypts its data using a randomly selected

symmetric key DEK in order to ensure the security and privacy

of data, and stores the encrypted data at CSP together with the

token used for data duplication check. The data holder encrypts

DEK with pkPS and passes the encrypted key to CSP.

Data Deduplication: Data duplication occurs at the time when

data holder u tries to store the same data that has been stored

already at CSP. This is checked by CSP through token

comparison. If the comparison is positive, CSP contacts AP for

deduplication by providing the token and the data holder’s PRE

public key. The AP challenges data ownership, checks the

eligibility of the data holder, and then issues a re-encryption

key that can convert the encrypted DEK to a form that can only

be decrypted by the eligible data holder.

Data Deletion: When the data holder deletes data from CSP,

CSP firstly manages the records of duplicated data holders by

removing the duplication record of this user. If the rest records

are not empty, the CSP will not delete the stored encrypted

data, but block data access from the holder that requests data

deletion. If the rest records are empty, the encrypted data

should be removed at CSP.

Data Owner Management: In case that a real data owner

uploads the data later than the data holder, the CSP can man-

age to save the data encrypted by the real data owner at the

cloud with the owner generated DEK and later on, AP sup-ports

re-encryption of DEK at CSP for eligible data holders.

Encrypted Data Update: In case that DEK is updated by a data

owner with DEK’ and the new encrypted raw data is provided

to CSP to replace old storage for the reason of achieving better

security, CSP issues the new re-encrypted DEK’ to all data

holders with the support of AP.

4.1 Procedures

4.1.1 Data Deduplication

The procedure of data deduplication at CSP with the support of

PS based on the proposed scheme. It suppose that user u1 saves

its sensitive data M at CSP with protection using DEK1, while

user u2 is a data holder who tries to save the same data at CSP.

The detailed procedure of data deduplication is presented

below:

Step 1 – System setup: as described in Section 3.

Step 2 – Data token generation: User u1 generates data token of

M, x1 = H(H(M) × P) and sends {x1; pk1; Cert(pk1)} to CSP.

Step 3 – Duplication check: CSP verifies Cert(pk1) and checks

if the duplicated data is stored by finding whether x1 exists. If

the check is negative, it requests data upload. User u1 encrypts

data M with DEK1 to get CT1 and encrypted DEK1 with pkPS to

get CK1. u1 sends CT1 and CK1 to CSP, which saves them

together with x1 and pk1. If the check is positive and the pre-

stored data is from the same user, it informs the user about this

situation. If the same data is from a different user, refer to Step

6 for deduplication.

Step 4 – Duplicated data upload and check: User u2 later on

tries to save the same data M at CSP following the same

procedure of Step 2 and 3. That is, u2 sends the data package

{x2; pk2; Cert(pk2)} to CSP. Duplication hap-pens because x2

exists, so CSP forwards {x2; pk2; Cert(pk2)} to PS.

Step 5 – Deduplication: CSP re-encrypts E(pkPS ; DEK1) by

calling R(rkPS →u2 ; E(pkPS ; DEK1))= E(pk2; DEK1) and

provides the re-encrypted key E(pk2; DEK1)to u2. Then u2 can

get DEK1 with its secret key sk2. u2 con-firms the success of

data deduplication to CSP that records corresponding

deduplication information in the system after getting this

notification.

At this moment, both u1 and u2 can access the same data M

saved at CSP. User u1 uses DEK1 directly, while u2 gets to

know DEK1 by calling D(sk2; E(pk2; DEK1))

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 8, Issue 3, March (2018)

ISSN: 2395-5317 ©EverScience Publications 80

4.2 Data Owner Management

In case that real data owner u1 uploads the data later than data

holder u2, CSP can manage to save the data encrypted by the

real data owner at the cloud and allow it to share the storage.

The real data ownership can be verified after challenging, e.g.,

the data owner should provide a specific certificate to show its

ownership. This case, CSP contacts AP by providing all data

holders’ pki (e.g., pk2) if CSP does not know its corresponding

re-encryption key rkPS →ui (e.g., rkPS →u2). AP issues rkPS →ui to

CSP if ownership challenge is positive. CSP re-encrypts CK1,

gets re-encrypted DEK1 (e.g., E(pk2; DEK1)), sends it to all

related data holders (e.g., u2), deletes CT2 and CK2 by replacing

it with u1’s encrypted copy CT1 and CK1, and finally updates

corresponding deduplication records.

4.2.1 Encrypted Data Update

In some cases, a data holder could update encrypted data stored

at CSP by generating a new DEK’ and upload the newly

encrypted data with DEK’ to CSP. User u1 sends an update

request: {x1; CT1
’; CK1

’; update CT1}. CSP saves CT1
’; CK1

’

together with x1 and pk1. CSP contacts PS for deduplication for

other data holders if their re-encryption keys are not known. PS

checks its policy for generating and sending corresponding re-

encryption keys (e.g., rkps →u2), which are used by CSP to

perform re-encryption on CK1
’ for generating re-encrypted

keys that can be decrypted by all eligible data holders (e.g.,

E(pk2; DEK1
’)). The re-encrypted keys are then sent to the

eligible data holders for future access on data. Any data holder

can perform the encrypted data update. Based on storage policy

and service agreement between the data holder and CSP, CSP

decides if such an update can be performed.

4.2.2 Valid Data Replication

As stated above, the savings through deduplication can be

passed back directly or indirectly to cloud users, which can help

them save storage costs. But sometimes data holders or owners

do not care about the storage costs, but want to hold the full

control over their data. Hence, they upload and store their own

data at CSP, even when it has been uploaded by other entities.

5. SECURITY ANALYSIS AND PERFOMANCE

EVALUATION

5.1 Security Analysis

This scheme provides a secure approach to protect and

deduplicate the data stored in cloud by concealing plaintext

from both CSP and PS. The security of the proposed scheme is

ensured by PRE theory, symmetric key encryption

Proposition 1. To pass the ownership verification of PS, a cloud

user must indeed have data M. Proof. With real data M, user ui

can generate correct H(M), compute right y=H (M)+ (si × c)

with si and the challenge c provided by AP, thus AP can

successfully compare that H((yP) + cVi) = H(H(M) × P) (si ×

c) × P (c × si × P) = H(H(M) × P)= xi is equal to xi, i.e., passing

the ownership verification of PS.

5.2 Computation Complexity

The proposed scheme involves four kinds of system roles: data

owner, User, CSP and PS. To present the computation

complexity in details, it adopt AES for symmetric encryption.

It analyze the complexity of uploading one data file as below.

Data owner regarded as the first data up loader, it is in charge

of four operations: system setup, data encryption, key

encryption, and token H(H(M)) .In addition, system setup takes

only once for all data storage operations. The computation

complexity of encrypting data using DEK depends on the size

of data, which is inevitable in any cryptographic methods for

protecting the data. Likewise, the computation complexity of

hash depends on the size of data, but it is very fast, which can

be ignored. The encryption of DEK using PRE need 2

exponentiations. The first step of data upload for deduplication

check involves one token generation, which needs two hashes

and one point multiplication. Thus, the computation

complexity of data owner is O(1)at both setup and data upload.

CSP. A user uploads its data to CSP by sending token H(H(M

) × P). CSP should first check if the same token has existed (by

comparing the token with the records in CSP, which is

inevitable in any deduplication schemes). Then, CSP chooses

to save the data if the token does not exist. If the data holder

uploads the same data, CSP contacts AP for gaining a re-

encryption key if the ownership challenge is positive. In this

case, CSP has to finish the re-encryption operation of PRE,

which requires 1 pairing. If the same data is uploaded by n data

holders, the computational complexity is O(n). CSP is

responsible for allowing the access to the same data for all data

holders by avoiding storing the same data in the cloud. When

data holder ui uploads the same data that has been stored in

CSP, it generates token H(H(M) × P) as the data owner has

done, which needs one point multiplication. In addition, the

data holder has to compute y =H(M) (si × c) during ownership

challenge, perform E(pkPS ; y) in order to protect H(M) from

disclosure in case y is known by a malicious party, and conduct

one more decryption for accessing the data, which involves 2

exponentiations in E(pkPS ; y) and 1 exponentiation in D(pki;

DEK). Note: the data holder has no need to encrypt the original

data for data upload. The computational complexity of a data

holder is O(1).

PS is responsible for the re-encryption key management. It

challenges data ownership by randomly selecting c, decrypting

y and comparing H((yP) cVi) with xi. It checks the policy and

issues the re-encryption key for authorized user by conducting

two point multiplications. The decryption of y needs 1

exponentiation. The re-encryption key generation needs 1

exponentiation. PS needs to issue keys for all authorized data

holders that upload the same data. Thus, the computational

complexity of PS is O(n). Notably, if the re-encryption key of

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 8, Issue 3, March (2018)

ISSN: 2395-5317 ©EverScience Publications 81

a data holder has been generated and issued already, PS will

only authorize CSP to perform re-encrytion on CK and will not

re-generate the re-encryption key any more.

It should note that the computational burden of system setup,

especially the generation of key pairs, can be amortized over

the lifetime of entities. Thus, our scheme is very efficient. It

also compare the scheme presented in this paper with our

previous work. It can see that our scheme is more efficient at

the side of data owners and holders than [3] regarding big data

deduplication because the point multiplication is more efficient

than the exponentiation operation, also refer to Tables 4, 5, and

6. Especially, data holders have no need to encrypt and upload

data, which can save much time and bandwidth. Our scheme

only introduces a bit more computation complexity at PS.

However, PS is a powerful server full of computation

capability. Thus additional computation load at PS is

acceptable.

5.3 Communication Cost

The extra communication cost introduced by the proposed

scheme is trivial. extra cost introduced by our scheme is {xi;

pki} during data uploading and storage. Its size is 1344 bits if

using SHA-1 hash function. Data deduplication also introduces

some extra communication cost: 2{fxi; pki}, c, E(pkPS ; y),

rkPS→ui , E(pki; DEK) and Vi. The size is 5984 bits if DEK size

is 256 bits and challenge number c is 160 bits. It can see that

the communication cost of our scheme is very light and it is not

influenced by the size of uploaded data. Thus, the proposed

scheme is suitable for supporting big data deduplication with

regard to communication cost.

5.4 Performance Evaluation

 Factors Existing Proposed

Key gen 4.5 5

Re-key gen 0 7.5

Enc 7.5 8

Re-enc 0 8.2

Dec 6.6 7

Table 1. Performance evaluation of Proposed System

The table 1 tabulates the percentage value of factors like key

generation, Re-Encryption key generation, Encryption, Re-

Encryption, Decryption for both existing and proposed model.

The Performance Evaluation is Carried out for both Existing

and proposed system model with ASP.NET as a front end and

sql as a backend as the software requirements and mouse,

keyboard, monitor as the hardware requirements.

 Fig.2 Graphical representation of Proposed System

The Fig.2 represents the tabulated values from the table 1. This

graph shows that the proposed system has the higher security

than the existing system. The factors represent the X axis and

the Percentage represents the Y axis.

5.4.1 Implementation and Testing Environment

It implemented the proposed scheme and tested its

performance. It applied a MySQL database to store data files

and related information. In our test, did not take into account

the time of data uploading and downloading. It focused on

testing the performance of the deduplication procedure and

algorithms designed in our scheme.

5.4.2 Efficiency Test

Test 1: Efficiency of data encryption and decryption

This experiment, it tested the operation time of data encryption

and decryption with AES by applying different AES key sizes

(128 bits, 196 bits and 256 bits) and different data size (from

10 megabytes to 600 megabytes). The testing environment was

Intel Core i5-3337U CPU 1.80 GHz 4.00 GB RAM, Ubuntu

v13.10 2.0 GB RAM, Dual-Core processor, 25.0G Hard disk.

AES key. Applying symmetric encryption for data protection

is a reasonable and practical choice. The time spent on AES

encryption and decryption is increased with the size of data.

This is inevitable in any encryption schemes. Since AES is very

efficient on data encryption and decryption, thus it is practical

to be applied for big data.

Test 2: Efficiency of PRE

It tested the efficiency of each operation of 1024-bit PRE with

different sizes of AES symmetric keys (128 bits, 196 bits and

256 bits). The time spent for PRE key pair generation

(KeyGen), re-encryption key generation (ReKeyGen),

encryption (Enc), re-encryption (ReEnc) and decryption (Dec)

is not related to the length of an input key. For the tested three

AES key sizes, the encryption time is less than 5 milliseconds.

0

1

2

3

4

5

6

7

8

9

key
gen

re key
gen

enc re enc dec

existing

proposed

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 8, Issue 3, March (2018)

ISSN: 2395-5317 ©EverScience Publications 82

The decryption time is about 1millisecond, which implies that

our scheme does not introduce heavy processing load to data

owners and holders. It also observes that the computation time

of each operation does not vary too much with the different

length of AES key size. Therefore, our scheme can be

efficiently adapted to various security requirements in various

scenarios. Obviously, our scheme used for deduplication does

not introduce much computation cost. In particular, the PRE

related operations for deduplication are not influenced by the

size of stored data. This fact implies that the proposed scheme

is similarly efficient with regard to different sizes of big data

deduplication. This result shows the significance and practical

potential of our scheme to support big data storage and

deduplication.

5.5 Further Discussions

The proposed scheme has the following additional advantages.

Flexibility: The proposed scheme can flexibly support access

control on encrypted data with deduplication. One data holder

can flexibly update DEK. The new key can be easily issued to

other data holders or eligible data users by CSP with a low cost,

especially when PS has issued the re-encryption key already.

Data revocation can be realized by blocking data access at CSP

and rejecting key re-encryption on a newly applied key DEK’.

Low Cost of Storage: The scheme can obviously save the

storage space of CSP since it only stores one copy of the same

data that is shared by data owner and data holders. Storing

deduplication records occupies some storage or memory for

saving token pki and xi (only 1024 + 160 bits). But comparing

with the big volume of duplicated data, this storage cost can be

ignored.

Big Data Support: The proposed scheme can efficiently

perform big data deduplication. First, duplicated big data

upload is efficient because only xi and pki are sent to CSP. CSP

performs hash comparison and then contacts PS to challenge

ownership for issuing a re-encryption key. The computation

and communication cost of this process (involving ownership

challenge, re-encryption key generation, CK re-encryption and

re-encrypted key decryption) is not influenced by the size of

big data. Second, uploading cipher text CT is inevitable in

almost all schemes for deduplication. The proposed scheme

only introduces a bit extra communication load (i.e., CK) and

a little bit additional communication cost for ownership

challenge. Compared with big data upload cost and storage

cost, they are very trivial and efficient.

6. CONCLUSION

Managing encrypted data with deduplication is important and

significant in practice for achieving a successful cloud storage

service, especially for big data storage. In this paper, it

proposed a practical scheme to manage the encrypted big data

in cloud with deduplication based on ownership challenge and

PRE. Encrypted data can be securely accessed because only

authorized data holders can obtain the symmetric keys used for

data decryption. Extensive performance analysis and test

showed that our scheme is secure and efficient under the

described security model and very suitable for big data

deduplication. The results of our computer simulations further

showed the practicability of our scheme. Future work includes

optimizing our design and implementation for practical

deployment and studying verifiable computation to ensure that

CSP behaves as expected in deduplication management.

REFERENCES

[1] Ali .M, et al., “SeDaSC: Secure data sharing in clouds,” IEEE Syst.J.,

vol. PP, no. 99, pp. 1–10, 2015, doi: 10.1109/JSYST.2014.2379646

[2] Bellare .M, S. Keelveedhi, and T. Ristenpart, “DupLESS: Server aided
encryption for deduplicated storage,” in Proc. 22nd USENIX Conf.

Secure., 2013, pp. 179–194.

[3] Bellare .M, S. Keelveedhi, and T. Ristenpart, “Message-locked
encryption and secure deduplication,” in Proc. Cryptology—

EUROCRYPT ,2013, pp. 296–312, doi:10.1007/978-3-642-38348-

9_18.
[4] Li .J, Li .Y .K, Chen .X .F, Lee .P .P .C, and Lou .W .J, “A hybrid cloud

approach for secure authorized deduplication,” IEEE Trans. Parallel

Distrib. Syst., vol. 26, no. 5, pp. 1206–1216, May

2015,doi:10.1109/TPDS.2014.2318320.

[5] Liu .C .Y, Liu .X .J, and Wan .L, “Policy-based deduplication in secure
cloud storage,” in Proc. Trustworthy Comput. Serv., 2013,pp. 250–262,

doi:10.1007/978-3-642-35795-4_32.

[6] Meye .P, Raipin .P, Tronel .F, and Anceaume .E, “A secure twophase
data deduplication scheme,” in Proc. HPCC/CSS/ICESS,2014, pp. 802–

809, doi:10.1109/HPCC.2014.134.

[7] Puzio .P, Molva .R, Onen .O .M, and Loureiro .S, “ClouDedup:Secure
deduplication with encrypted data for cloud storage,” in Proc. IEEE Int.

Cof. Cloud Comput. Technol. Sci.,

pp370,doi:10.1109/CloudCom.2013.54
[8] Sun .Z, Shen .J, and Yong .J .M, “DeDu: Building a deduplication

storage system over cloud computing,” in Proc. IEEE Int. Conf.Comput.

Supported Cooperative Work Des., 2011, pp. 348–
355,doi:10.1109/CSCWD.2011.5960097.

[9] Wu .T .Y, Pan .J .S, and Lin .C .F, “Improving accessing efficiency of

cloud storage using de-duplication and feedback schemes,” IEEE Syst.
J., vol. , no. 1, pp. 208–218, Mar. 2014,

doi:10.1109/JSYST.2013.2256715.

[10] Yang .C, Ren .J, and Ma .J .F, “Provable ownership of file in
deduplication cloud storage,” Proc. IEEE Global Commun. Conf.,2013,

pp. 695–700, doi:10.1109/GLOCOM.2013.6831153.

